Non-atomic Classification to Improve a Semantic Role Labeler for a Low-resource Language

نویسنده

  • Richard Johansson
چکیده

Semantic role classification accuracy for most languages other than English is constrained by the small amount of annotated data. In this paper, we demonstrate how the frame-to-frame relations described in the FrameNet ontology can be used to improve the performance of a FrameNet-based semantic role classifier for Swedish, a low-resource language. In order to make use of the FrameNet relations, we cast the semantic role classification task as a non-atomic label prediction task. The experiments show that the cross-frame generalization methods lead to a 27% reduction in the number of errors made by the classifier. For previously unseen frames, the reduction is even more significant: 50%.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

What a Parser Can Learn from a Semantic Role Labeler and Vice Versa

In many NLP systems, there is a unidirectional flow of information in which a parser supplies input to a semantic role labeler. In this paper, we build a system that allows information to flow in both directions. We make use of semantic role predictions in choosing a single-best parse. This process relies on an averaged perceptron model to distinguish likely semantic roles from erroneous ones. ...

متن کامل

Semantic Prosody: Its Knowledge and Appropriate Selection of Equivalents

In translation, choosing appropriate equivalent is essential to convey the right message from source-text to target-text, and one of the issues that may have a determinative role in appropriate equivalent choice is the semantic prosody (SP) behavior of words and the relation existing between the SP of a word and semantic senses (i.e. negativity, positivity or neutrality) of its collocations in ...

متن کامل

Semantic Prosody: Its Knowledge and Appropriate Selection of Equivalents

In translation, choosing appropriate equivalent is essential to convey the right message from source-text to target-text, and one of the issues that may have a determinative role in appropriate equivalent choice is the semantic prosody (SP) behavior of words and the relation existing between the SP of a word and semantic senses (i.e. negativity, positivity or neutrality) of its collocations in ...

متن کامل

Using Cross-Lingual Projections to Generate Semantic Role Labeled Annotated Corpus for Urdu - A Resource Poor Language

In this paper we explore the possibility of using cross lingual projections that help to automatically induce role-semantic annotations in the PropBank paradigm for Urdu, a resource poor language. This technique provides annotation projections based on word alignments. It is relatively inexpensive and has the potential to reduce human effort involved in creating semantic role resources. The pro...

متن کامل

Semantic Role Labeling Without Treebanks?

We describe a method for training a semantic role labeler for CCG in the absence of gold-standard syntax derivations. Traditionally, semantic role labeling is performed by placing human-annotated semantic roles on gold-standard syntactic parses, identifying patterns in the syntaxsemantics relationship, and then predicting roles on novel syntactic analyses. The gold standard syntactic training d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012